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A rivulet is a narrow stream of liquid located on a solid surface and sharing a curved 
interface with the surrounding gas. Long-wave instabilities are investigated for flat 
rivulets on a vertical wall. Three cases of contact-line conditions are investigated : 
(i) fixed contact lines, (ii) moving contact lines having fixed contact angles and (iii) 
moving contact lines whose contact angles vary smoothly with contact-line speeds. 
For case (i), the straight, unidirectional rivulet is stable below a critical Reynolds 
number. For case (ii), the rivulet is unconditionally unstable. For case (iii), the vari- 
ation, G, = [da/dU,,],, = ,,, in contact angle a with contact-line speed U,, stabilizes 
the rivulet and if G, is large enough can completely stabilize the flow. The analysis lends 
support to the idea that contact-angle steepening with contact-line motion is a purely 
dissipative process. 

1. Introduction 
A rivulet is a narrow stream of liquid flowing along a solid surface and sharing an 

interface with the surrounding fluid. The flow within the rivulet is driven by the com- 
ponent of gravity along the solid surface as shown in figure 1. Rivulets are often seen 
on automobile windshields and on the walls of showers. They are frequently formed 
when uniform films break up and during condensation processes. 

Rivulets display a large variety of intriguing instability phenomena. Kern (1969, 
1971) sees the break-up of straight rivulets into droplets, rivulet meandering and the 
transition of rivulet flow from laminar to turbulent regimes. Large-amplitude surface 
waves are apparent in many situations. Our own preliminary experiments (Culkin 
1979) show these together with more intricate phenomena. Clearly, the state of the 
fluid motion is important in assessing the rate of heat. and mass transport in these 
systems and thus precise stability criteria are required. 

The feature of rivulets that makes them most interesting and also so difficult to 
analyse is the existence of their contact lines. A contact line is the geometric curve 
formed by the intersection with the solid of an interface between two immiscible 
fluids. The rivulet sketched in figure 1 shows two such lines. When a contact line moves 
and the no-slip condition is enforced on all fluid-solid boundaries, an infinite-force 
singularity is present at the contact line (Dussan V. & Davis 1974). This is due to the 
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FIGURE 1. Sketch of a rivulet: (a)  side view, ( b )  plan view, (c) front view. 

kinematics of mutual displacement. If the local details of the flow are of interest, as 
they are in rivulet instabilities, the singularity must be eliminated. This can be done by 
allowing effective slip near the contact line. This route has been used with success in 
several analyses involving mutual displacement of one viscous fluid by another 
(Dussan V. 1976; Hocking 1977; Huh & Mason 1977). These areas are ably reviewed 
by Dussan V. (1979). 

The rivulet can thus be seen to have interent fluid-dynamical interest. It possesses 
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FIGURE 2. Sketch of experimental results of contact angle a v8. contact-line speed UCL. 
UCL > 0 denotes liquid displacing gas; UCL < 0 denotes gaa displacing liquid. 

free boundaries and moving contact lines, and it displays a large variety of instability 
phenomena. Furthermore, it can play the role of a vehicle for the study of moving- 
contact-line boundary conditions by assessment of their effects on the gross instability 
characteristics of the system. 

The only previous instability analysis on rivulet instabilities is given by Davis 
(1980). He considers a small, static rivulet on a horizontal plate. Owing to the curvature 
of the free surface, the fluid configuration is susceptible to capillary instabilities of 
Rayleigh (1879)-type. However, in contrast to the Rayleigh jet, the rivulet has solid- 
liquid contact and hence contact lines. Davis (1980) considers three types of contact- 
line conditions, (i) fixed contact lines, (ii) fixed contact angles and (iii) contact angles 
that vary smoothly with contact-line speeds. Davis then manipulates the linearized 
stability equations into a balance equation for kinetic energy, which has the form of 
a damped linear-harmonic-oscillator equation of the form 

E @ + W + I  = 0, (1 .1)  

where v is the linear-stability-theory growth rate, E is the kinetic energy of a small 
disturbance, (D is the viscous dissipation and I is the interfacial energy due to surface 
tension. The above is the situation for case (i) of fixed contact lines. Stability follows 
for I > 0 and this is interpreted in terms of contact angle and disturbance wavenumber 
to give explicit stability predictions. For case (ii) where the contact angle is fixed upon 
disturbance but where the contact line moves, the effective slippage allowed at the 
liquid-solid surface becomes included in the effective dissipation CP. Again, I > 0 
implies stability and explicit results are obtained. Of most interest is case (iii), where 
there is a dynamic contact-line condition; it is found that the steepening of the contact 
angle with contact-line speed is a purely dissipative effect in that it contributes only 
to 0 and not to the functional I. Hence, the stability conditions for cases (ii) and (iii) 
are identical. Davis (1980) does discuss aspects of contact-angle hysteresis, the common 
situation shown in figure 2. 

In  the present work we pose the linearized hydrodynamic stability theory for a 
dynamic rivulet flow down a vertical planar wall. We consider the same three cases (i), 
(ii), and (iii)ofcontact-1ineconditionsasposedbyDavis (1980). Explicitstabilityresults 
are obtained for travelling-wave disturbances whose wavelength h is much longer than 
the maximum depth h, of the undisturbed rivulet, k = 2nh,/h < 1, and where the 
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rivulet is very flat, 6 = h,/L 1, where L is the half-width ofthe undisturbed rivulet. 
We presume that k < 6, though other cases are easily handled. This theory is analogous 
to that of Yih (1963) for film flow if 6 = 0 and no contact lines are present. It is some- 
what similar to the long-wave analysis of Rothrock (1968) who looked at pendant 
rivulets having no contact lines. However, our procedure is different in detail. 

The results of our analysis are as follows: (i) When the contact lines are fixed, there 
is a critical Reynolds number R, below which the rivulet is stable. R, is much larger 
than that of film flow even if 6 + 0. (ii) When the contact lines are free to move but 
subject to fixed contact angle, the rivulet is unconditionally unstable. (iii) When the 
contact lines are free to move, subject to their contact angles being smooth functions 
of contact-line speed, then the rivulet is always more stable than that of case (ii). In 
fact the degree of stabilization is proportional to GI E [da/dUCJUCL=,,, the slope of 
the curve of contact angle a versw contact-line speed UcL. In fact when G, + co one 
approaches the case of contact-angle hysteresis, which then seems to give a rivulet in 
a very stable configuration. These results will be discussed later. Finally, the con- 
clusion of Davis (1980), that the increase in contact angle with contact-line speed is a 
pure dissipative process, is given further support. 

R. H .  Weiland and S. H .  Davis 

2. Formulation 
A long, smooth flat plate is inclined at an angle1 to the horizontal. A narrow stream 

of liquid, a rivulet, flows down the plane as shown in figure 1. This Newtonian liquid 
has constant density p and constant viscosity p. The flow is driven by the component 
g sin 1 of gravity along the plete and the system is isothermal. The surrounding fluid 
is a passive gas that applies a con-atmospheric pressure on the liquid-gas interface. 

The governing equations for this s$tem are the Navier-Stokes equations and the 
equation of continuity: 

p(aif+ajaQi,,) = a i j , j + p P ,  ( 2 . 1 ~ )  
and 

ai,, = 0, \. (2.lb) 

where Bi is the velocity vector, (ai) = (a, 8, a), i?ij is the stress tensor, 

(2.1c) 

( 2 . 1 4  

A 

aij = -@'ij+p(Qi,j+aj,i), 

and 8 is the body force per unit mass due to gravity, 

(8) = g(sinB, - cosp, 0). 

The summation convention is assumed. 
Equations (2.1) are referred to a right-handed Cartesian co-ordinate system, shown 

in figure 1, whose origin is on the plate, whose 2 axis points down the plane and whose 
Q axis points normal to the plate into the liquid. 

The boundary conditions appropriate to the liquid-gas interface, a t  9 = @(2,2, i), 
are the kinematic condition, 

8 = r^g+ afis + &fjQ (2.2a) 

and the stress jump appropriate to an uncontaminated interface having constant 
surface tension T, 

[eij]hj = 2iThi .  (2.2b) 
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Here A is the unit outward normal vector to the interface, 

A =(-q$l,  -qg)(l+@+q$)-i 

and ,% is the mean curvature of the surface, 

( 2 . 2 4  

(2.2d) 

It will be useful in what follows to define two orthogonal unit tangent vectors t(l) and 
t(2) as follows: 

t(l)= (O,q$l)(l+q;)-i (2.2e) 
and 

t(2) = (1 + q& q g ,  - q&Q) (1 + 4+$)-4 (1  + q; + q$i. (2 .2 . f )  

The geometric curves of intersection between the interface and the plate are called 
contact lines. As shown in figure 1, these are located at 2 = 2,(4, f )  and2 = 2L(6?, f ) .  These 
positions are a priori unknown. (This is a free-boundary problem.) In order to complete 
the formulation of the flow problem, it is necessary to pose conditions on the motion 
of these lines. 

The first statement is the condition of contact: there is a line along which the liquid 
thickness is zero, 

q = o at  1 = k,, 2, for all 2,f. ( 2 . 3 ~ )  

The second statement concerns the contact angle; the slope of the interface a t  the 
contact line in the direction normal to the contact line is the tangent of the angle, 

0 q . v  = f t a n a ,  (2.3b) 

where v is the unit outward vector on the solid normal to the contact line and a is called 
the contact angle. The f refers to the pair of contact lines in question; respectively 
for + and - values 1 = 2, and 2R. 

Before these two conditions can be converted into usable boundary conditions, they 
must be augmented by an ansatz that distinguishes one set of materials from another. 
The ansatz is ultimately dependent upon experimental observation. Among the 
possibilities are the following: 

(i) Fixed contact line. The contact line does not move, its position remaining 
invariant for ell time. Hence, 2L and 1R are time independent. 

(ii) Fixed contact angle. The contact angle a does not differ from its static (thermo- 
dynamic) contact angle a, for all time. Here, it  is presumed that a, is unique though 
this is a reasonable assumption in only few cases. See Dussan V. (1979) for a discussion. 

(iii) Smooth contact-angle variation. The contact angle a depends smoothly on the 
variables of the motion. For example, a = G(UcL) where UcL is the speed along the 
plate of the contact line normal to itself and G’( UcL) exists always. The smoothness here 
excludes contact-angle hysteresis. 

(iv) Contact-angle hysteresis. The contact angle depends on the motion but also on 
the history of the motion. For example, a = G(U,,) is discontinuous a t  UcL = 0 as 
shown in figure 2 .  This case is considered common. See Dussan V. (1 979) for a discussion. 

Finally, there is a boundary condition on the wetted solid. For the case (i) of a fixed 
contan+, line, there is the classical no-slip condition: 

G i =  0 on g =  0, 2, < l < e R .  (2.4) 
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However, when the contact line can move as it would in cases (ii), (iii) and (iv), Dussan 
V. & Davis (1974) have shown on the basis of the kinematics that a non-integrable 
singularity a t  the contact line exists as long as the no-slip condition is enforced. 
Hence, we allow effective slip near each contact line. We shall use the following model 
(e.g. see Greenspan 1978): 

Here, the liquid slips over the solid a t  a speed that is directly proportional to the shear; 
the magnitude of slip is a numerically small constant 2 divided by the liquid thickness 
and is thus appreciable only near the contact line. 

The analysis of long waves on flat rivulets is a type of lubrication theory. Hence, we 
shall replace the kinematic condition ( 2 . 2 ~ )  by an integral relation. This relation is 
obtained by integrating the continuity condition (2.1 b )  from 9 = 0 to Q = Q to obtain 0 .  
This form of is substituted into the kinematic condition ( 2 . 2 ~ )  to obtain 

This relation is then integrated from 2 = 2, to 2 = 2,. The result can be put in the 

3. The basic state 
One solution for rivulets on a long, smooth plate consists of a steady, unidirectional, 

fully developed flow down the plate in the 2 direction. The fluid wets the solid on a 
strip of constant width, 

- 

The corresponding interfacial shape is likewise P independent and so forms a cylindrical 
meniscus. The flow is driven by the component g sinp of the gravitational acceleration 
along the plate and is hence determined by a balance between g sin /3 and the viscous 
forces. The cylindrical meniscus has a shape determined by surface tension and the 
component gcos,d of the gravitational acceleration normal to the plate. The general 
forms of flow field and meniscus have been given by Towel1 & Rothfeld (1966) for the 
case where the no-slip condition holds on the solid. However, we allow slip on the 
solid-liquid interface. We wish to consider a special case of this system corresponding 
to the flow down a vertical plate, /3 = 8.. The meniscus cross-section then is the arc of 
a circle. The maximum height of the meniscus is called h,. 

Let us scale all variables in the problem as follows: 

length -+ h,, speed + Us = pghi/p, pressure + pU,/h,, time -+ h,/U.. (3.2) 

In terms of the above scales, the meniscus y = H ( z )  satisfies 

Hzz(1+H,2)4 = -7r, H ( 0 )  = 1, HJO) = 0, (3.3u, b,  c )  

H(S-1) = 0, HJ8-l)  = -tans,. ( 3 . 3 4  e )  
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In the above, T is the constant curvature of the meniscus which corresponds to the 
pressure excess p over the ambient gas pressure. The meniscus is symmetric in z so 
that only the half-interval 0 Q z Q 8-l is considered, 

S = h,/L. ( 3 . 4 )  

Condition (3 .3b )  reflects the length scale chosen, while condition ( 3 . 3 ~ )  reflects the 
z symmetry of the meniscus. Condition ( 3 . 3 4  is that of contact while condition (3.3e) 
defines the contact angle. 

In  terms of the scales ( 3 . 2 ) ,  the basic flow satisfies 

where 

_ _  uvv+uz?: = - 1, 

U(0,z )  =-Uv(0,z), 0 Q z Q 6-1, 
H ( z )  

- K -  

D,,(H(z) ,z)  = 0, 0 Q z Q 8-1, 

K = $/hf .  

( 3 . 5 a )  

(3 .5b)  

(3 .5c )  

( 3 . 5 4  

The basic flow is likewise symmetric in z. Condition (3 .5b )  reflects the slip condition 
on the solid-liquid interface. This effective slip is introduced in the model so that we 
can describe instabilities of this basic state involving moving contact lines. For ( 3 . 5 ~ )  
is the condition of zero shear stress along the x direction. Here the subscript N denotes 
the normal derivative in the direction N, where N is the unit outward normal to the 
interface : 

N = ( O , l , - H , ) N - '  ( 3 . 6 ~ )  
where 

N = (1 +E)k (3 .6b )  

The corresponding unit tangent vectors to the undisturbed interface will be needed 
later. These are 

T(') = (0, H,, 1) N-' ( 3 . 6 ~ )  
and 

T(2) = ( l , O , O ) .  ( 3 . 6 d )  

The basic state pressure field p within the rivulet represents the pressure excess 
determined by the curvature of the interface times the surface tension. Since the 
curvature is constant, so is the pressure: 

p = B,1 ( 3 . 7 a )  

where the Bond number Bh based on length scale h, is given by 

Bh = p g h f l T ,  ( 3 . 7 b )  

which is the equivalent capillary number U,,u/T for this problem. 
We shall shortly need to d e h e  the Bond number BL baaed on length scale L, 



268 R. H .  Weiland and S .  H .  Davis 

4. The basic state for flat rivulets 
We shall consider now approximations to H ( z )  and B(y,z) appropriate to flat 

rivulets, 6 < 1 ,  having small contact angles. In  order to do so, we introduce a new 
variable, 

2 = 62 (4.1) 

which allows the variations in z to be scaled on L rather than on h,. 
The meniscus equation ( 3 . 3 ~ )  then takes the form 

a2HZz( 1 + 62H2,)G = -IT. (4.2) 

We seek approximate solutions to equation (4.2) by writing 

H - H(O) + O( S2) ( 4 . 3 ~ )  

and IT - 62[7r(O) + 0 ( 6 2 ) ] ,  (4.3b) 

(4.3c) 0 1 ~  - 8[do) + 0 ( S 2 ) ] ,  

and we assume that Bil = O( 1 )  as 8 --f 0. This requirement is needed laterto retain the 
surface-tension effects in the stability analysis and will be discussed in $ 7 .  The 
orderings in expansions (4.3b, c) reflect the fact that a flat rivulet has a small pressure 
jump across its interface and a small contact angle. 

If we substitute forms (4.3) into (4.2) and boundary condition (3.3b, c , d , e ) ,  we 
obtain a t  order one, 

Hgk = -do), H(O'(0) = 1, Hg)(O) = 0, (4.4a, b, c) 

H(O'(1) = 0,  H i o ) ( l )  = -03"). (4.4, d ,  e )  

The solution of (4.4) is given by 

HCO) = 1 - 2 2 ,  = 2, = 2. (4.5a, b, c) 

Clearly, approximations to any order can be obtained in this way. 

solution. We introduce 2 by equation (4.1) and write 
The flow equation (3.5) can be approximated in the same way as the meniscus 

We now let 
( 4 . 6 ~ )  

(4.6b) 

By substituting from (4.6) into system ( 3 4 ,  we obtain at O( 1 )  the following system: 

The solution to system (4.7) is 
gcn = HCO) y - * y2 + K .  

We see that the effect of slip on the basic state is only minor. The slip induces at  leading 
order in 8 a small translation onto 8 ( 0 )  but leaves the velocity gradients unchanged. 
Clearly, higher-order approximations may be obtained in this way. 

It is worth noting that the limit 8 -+ 0 is formally a singular perturbation of ( 3 . 5 ~ )  
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since in the limit the derivative a2/aZ2 is lost. However, the approximate solution (4 .8 )  
does satisfactorily satisfy the full problem with error O ( P )  uniformly. Hence, the 
domain - 1 < 2 < 1 ,  0 < Y < H ( 2 )  is such that a uniformly valid approximate 
solution is obtained by using the 'outer' solution. 

5. Disturbance equations 
Let us allow disturbances of the basic state as follows: 

v = (u(y,z),O,O)+ev', p = P+ep' ,  h = H(z)+eh'. ( 5 . 1 a , b , c )  

The contact-line positions and contact angles are given by 

(ZL, z R )  = ( - 6-', 8-l) + e( -2;s 2;) 

and 
(5 .1d )  

aR, = a, + eaA, L. ( 5 . l e )  

If forms (5 .1)  are substituted into the non-dimensional form of (2 .1) - (2 .4) ,  and 
linearized in disturbance quantities, the linearized-disturbance system results at 
order e.  If the primes are dropped, this system is as follows: 

R[~i,+Uvi,,+ ( D Y ~ + Q ~ ) T i 2 ) ]  = uij,,, ( 5 . 2 ~ )  

vi , i  = 0,  (5 .2b )  

~ i j  Nj Ni = Bh'K on y = H ,  ( 5 . 2 ~ )  

vij Nj Ti') = ( a U / a w )  N-'h, on y =  H, ( 5 . 2 d )  

v = ht+ Dh,+ H,w on y =  H, 

aij = + vi, j + vj, i ,  

K = (N-Vi,), + N-'h,,, 
and the Reynolds number R is given by 

(5 .2e )  

(5 .2 . f )  

(5 .29)  
(5 .2h)  

R = U,h,,/v. ( 5 . 2 i )  

In the course of deriving system (5 .2 ) ,  we have transferred the interface from its exact 
position to its undisturbed position y = H and have used the basic-state solutions for 
simplification. 

The above system must be augmented by conditions at  the contact lines plus 
conditions on the solid-liquid interface. The latter conditions involve effective slip 
which is utilized when the contact lines move. This slip takes the form 

v = o ,  y = o  
and 

(5 .34  

(5 .3b)  

K 
w = - w  y = 0. (5.3c) 

H Y' 

Form (5.3~2) implies that no liquid penetrates the solid while forms (5 .3b ,  c )  give the 
linearized slip conditions. The contact-line conditions are formulated in 5 6. 
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The linearized form of the volume-flow condition (2 .6 )  replaces the kinematic 
condition and is given as follows : 

( 5 . 3 4  

6. Contact-line conditions 
The conditions to be applied a t  the contact lines depend on the presence or absence 

of contact-line motion. We consider the same possibilities as Davis (1980),  namely 
(i) fixed contact lines, (ii) fixed contact angle (including effective slip) and (iii) smooth 
contact-angle variations (including effective slip). Cases (ii) and (iii) involve moving 
contact lines, the lines no longer being straight. 

The contact-line conditions are obtained from the condition of contact, (2 .3a ) ,  and 
the contact-angle condition, (2 .3b ) .  

Let us consider the contact line at z = 8-' + B Z , ( X ,  t ) .  The linearized form of ( 2 . 3 ~ )  is 

h(x,  8-l, t )  = - HZ(8-l) z,(z, t ) .  
Likewise, 

h(x,  - 8-1, t )  = H,( - 8-1) ZL(5, t ) .  

( 6 . 1 ~ )  

( 6 . l b )  

The normal vector v to the contact line defined in (2 .3b )  is 

v = ( - E Z R Z ,  0 , l )  ( 1  + €22$z)-6 

so that the linearized form of (2 .3  b )  is 

Likewise, 
h,(x, 8-l, t )  = - HZ2(8-l) zR - a, sec2 uo. 

h,(x, - 8-l, t )  = HZz( - S1) zL + uL sec2 uo. 

( 6 . 2 ~ )  

(6 .2b)  

We can now consider cases of contact-line boundary conditions. 
Fixed contact lines. When the contact lines are fixed in space a t  their basic state 

h = 0, z = f 8-1. (6 .3)  

Since the contact lines are stationary, the no-slip condition on the solid-liquid inter- 
face is adequate. Hence, K = 0 in forms (5 .3 )  and 

positions, zR = zL E 0, so that equations (6 .1 )  give 

v = 0 on y = 0, IzI < 8-1. (6 -4 )  

Fixed contact angles. When the contact angles are fixed for all time, u = uo at each 
line and hence uR = aL = 0. Since z,, zL + 0, we can eliminate those between (6 .1)  and 
(6 .2) .  We then obtain 

(6.5) 

Smooth contact-angle variation. If it  is assumed that the instantaneous contact angle 
depends smoothly on the contact-line speed (in the direction normal to the contact 
line), then, near z = 8-l, 

The linearized version of (6 .6 )  is 

h , - - h = O ,  HZ, z = & 6 1 .  
H, 

CCO+BUR = G(O+EUCL). (6 .6 )  

uR = G1u(J,, 
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where 

and 
G, = G'(O), 

UCL = * vR1 z=b-'+czz, 

= w - VzRZ + O(S), 2 = 8-l. 

However, if we use the kinematic condition ( 5 . 2 f )  and form (6.1 a)  to eliminate both w 
and zR,  we have 

4 

Hence, 

When result (6 .7 )  is compared with form ( 6 . 2 ~ )  we find that 

Here we have used the relation that tan a,, = T H, at z = f S- l .  

7. Disturbance equations for long waves on rivulets 
We wish to consider the stability of rivulet flows in the case that the maximum 

depth h, is much shorter than the wavelength h of the disturbances. If we define a 
non-dimensional wavenumber, k = 27rh,/A, we examine the case k < 1 for R and S held 
fixed but arbitrary. 

We rescale the variables as follows: 

(7 .1 )  1 T = kt, X = kx, Y = y, 2 = 82, 
U = u ,  V = v / k ,  W = S w / k ,  P =  kp, h =  h. 

In  the scalings (7.1) we have used facts appropriate to long waves on film flow. 
Among these are that the complex growth rate is O ( k )  so that kt scales the time. 
Furthermore, we allow p = O( l /k),  as is appropriate in lubrication theory, though it 
turns out in all cases that the leading term in pressure is zero so that p = O( 1 ) .  The 
scalings in S are taken so that, as S + 0, the full equation of continuity is preserved. 

We introduce normal modes for each dependent variable # as follows: 

$(X, Y ,  2, 5") = a( Y ,  2) ei ( X - c T ) .  ( 7 .2 )  

We can then see that the complex eigenvalue, c = cR + ic,. determines the stability 
of the basic state. If forms (7 .1)  and (7 .2 )  are substituted into (5 .2 ) ,  (5 .3 ) ,  and (6.3), 
(6 .5 )  and ( 6 4 ,  we obtain the scaled, linearized disturbance system in terms of normal 
modes. These are as follows: 

( 7 . 3 4  

(7.3 b )  

kR{ i (O-c)  U + U y  V+Vzw> = - iP+k2U+Uyy+S2UZz,  

iPR( a - c) v = - P y  + k2{k2V + vy y + PV,,), 

ik3R(U-e)  W = -PPz+k2{k2W+Wyy+S2WZZ},  ( 7 . 3 4  

iu+v,+wz = 0,  ( 7 . 3 4  
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- P + Zk*[Vy + 6aH2, Wz - Hz( Wy + PV,)] N-2 = k B ~ ' [ P ( N - 3 h z ) z  - k*N-'h], 
Y = H ,  (7.3e) 

-i82[~z+HZuP]h+(1-S2~)[Wp+P~z]+2S2HZ(Vy-WZ) = 0, Y = H ,  ( 7 . 3 f )  

U ~ + i k 2 V - H z [ ~ U Z + i k 2 W ] - S 2 ~ ~ h Z + [ ~ P - B 2 H Z ~ z ] p h  = 0, Y = H ,  (7.3g) 

/' [n(H,  2) - c] h d Z  + J',J; U d Y d Z  = 0, (7 .3h)  

(7 .3i)  

-1 
where 

and we have used ( 3 . 5 ~ )  to simplify (7.3g).  

N = ( 1  + PHt)) 

The boundary condition on the solid-liquid interface is given b y  (5.3). These are 

v = 0, Y = 0, ( 7 . 4 ~ )  

u=,[,-;uy], K Y = O ,  (7.4b) 

(7.4c) 
K w = -wy, Y = 0. 
H 

At the contact lines, we have three distinct casea. 
When the contact lines arefixed, K = 0 in (7.4b, c )  and (6.3) gives 

h = 0 ,  Z = + l .  (7.4d) 

When the contact angles are fixed, K + 0 in (7.4b, c )  and (6.5) gives 

h Z - G h  = 0, Z = f 1.  
HZ 

When there is smooth contact-angle variation, K + 0 in (7.4b, c )  and (6.8) gives 

(7.4e) 

We now exploit the fact that k is small and express all dependent variables q5 and 
complex eigenvalue c in powers of k ,  

9 = 9 0  + k A +  W2) (7.5a) 

and c = co+kcl+O(k2).  (7.5b) 

At order unity in k ,  the system (7.3) and (7.4) has the form 

Uo + s2Uozz - iPo = 0, ( 7 . 6 ~ )  

Po, = 0, (7.6b) 

S2P0Z = 0, ( 7 . 6 ~ )  

(7 .6d)  

P,=O, Y = H ,  (7.6e) 

iU,+v,y + w,, = 0, 

- i S 2 [ ~ z + H Z ~ ~ ~ ] h o + ( 1 - S 2 H , 2 ) [ ~ ~ + s 2 V O Z ] + 2 S 2 H Z ( ~ I O p - ~ z )  = 0, Y = H ,  ( 7 . 6 f )  

U o ~ - 6 2 H z U o z - S 2 ~ ~ h 0 Z + [ ~ y - ~ H Z ~ z ] ~ h 0  = 0, Y = H ,  (73d 
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s' [ B ( H ,  2) - co] h,dZ + j'lJ; UodYdZ = 0, 
-1 

(7 .6h)  

& = O ,  Y = O ,  ( 7 . 6 i )  

K w --way, Y=O.  ( 7 . 6 k )  O - N  

The contact-line conditions are: (i) for fixed contact lines, K = 0 and 

h, = 0, z = k l ;  ( 7 . 7 a )  

0 and (ii) for fixed contact angles, K 

Z = * l ;  

and (iii) for smooth contact-angle variation K + 0 and 

h o z - g h o  = 0, z =  k l .  

(7 .7b)  

( 7 . 7 4  

At order k ,  the system (7.3) and (7 .4)  has the form 

U1,,+S2U1zz-iP, = R { i ( U - c o ) U o + U , V , + ~ ~ W o } ,  ( 7 . 8 ~ )  

?tp = 0, (7 .8b)  

S2PlZ = 0,  (7.8~) 

iu,+v,y+w,, = 0, (7 .8d )  

- PI = Bi1(N-'hOz)Z - BhlN-'h,, Y = H ,  (7 .8e )  

- ~ [ B Z  + Hz u y ]  hi + (1 - S2pz) [W,, + S2V,,] + 2S2Hz(& - Kz) = 0, Y = H ,  ( 7 . 8 f )  

(7 .89 )  U1 y - S2Hz U1z - S2Bz h1z + [Uy - S2Hz Bz] y h1 = 0, Y = H ,  

(7.8h)  

v , = o ,  Y = O ,  (7.8;)  

U - -  U - r h ,  B , Y = O ,  
l-;[ lY H ] 

K 
W 1 = j j T q y ,  Y = O .  (7 .8k )  

In addition 
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I n  equation (7.8e) we have written 

where BA is the Bond number based on length scale A. I n  equation ( 7 . 9 ~ )  

R. H .  Weiland and 8. H .  Davis 

BA = Bhk-2, (7.10) 

g1 = G 1 P 2  (7.11) 

is assumed to be O( 1) as 8 + 0 in order to retain the effect of contact-angle variations 
during contact-line motion. 

In  the case of film flow, treated in 5 8, the term involving B, is absent so that in 
order to retain the effects of surface tension we must make the standard assumption 
that BA = O( 1) ask + 0. However, in rivulet flows, as long as k2/J2 < 1, B,il is negligible 
and the effect of surface tension is effectively much larger. 

We shall need only some of the order-k2 equations. These are as follows: 

P2P = v,,, + s2K3zz, ( 7 . 1 2 ~ )  

(7.1 2 b )  s2p2z = w,,, + d2w,zz, 

- Pz + 2[V,, + S2Hi W,z - Hz( W,, + S2V,,] N-2 = B ~ ~ ( N - ~ h , z ) z  - B,i'N-lh 19 
Y = H .  ( 7 . 1 2 ~ )  

8. Film flow 
Film flow involves a continuous layer of infinite extent in the z direction. The 

stability of two-dimensional waves on such a vertical film was first determined using 
long-wave expansions by Yih (1963). Our present analysis reproduces these results. 

The film-flow equations are obtained from system (7.3) by writing 

H ( 2 )  3 1, V ( Y , Z )  = Y-&Y2+K,  w 3 0,  (8.1 a, b, c) 

The solutions a t  order unity satisfy the system (7.6) specialized by the film-flow 

u,= Y ,  v, = -4iY2, Po = 0,  h, = 1 .  (8.2a, b,  c, d )  

and seeking z-independent solutions. We shall call this the film-flow limit. 

limit. These are 

Note that since Po = 0 the unscaled pressure field p of (7.2) satisfies p = O( 1). 
The eigenvalue c, is obtained through substitution into form (7.6h). We find that 

C,, = 1+K. (8.3) 

The solutions a t  order k satisfy the system (7.8) specialized by the film-flow limit. 

U1 = i{&B,il Yz+ QR() Y4 - Y3)  + A,Y+ K(&R - Bn')}, ( 8 . 4 ~ )  

V, = aBh'Y3+AR(iY5- Y 4 ) + 4 A 1 Y 2 + ~ ( 4 R - B ~ ' )  Y ,  ( 8 . 4 b )  

PI = B,il, h, = i {Bi1-4R+A1},  (8.4c, d )  

where we have chosen the arbitrary multiplication constant of linear theory by 
selecting Pl. Here the arbitrary constant A ,  comes from the complementary solution 
of the order-k equations and as such reproduces the order-unity solutions given in 
(8.2). Without loss of generality, we can set 

These are 

A ,  = 0. (8.5) 
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Using the forms of U, and h, given in (8 .4a,  d ) ,  we substitute into (7 .9h)  to obtain 

c1 = i{&R - &B:l+ K(&R - B:')}. (8 .6)  

c N ~ + K + ~ ~ { & R - & B ~ ~ + K ( ~ R - B ~ ~ ) } + O ( ~ ~ )  (8.7)  

We thus see from (8 .3)  and (8.6) for film flow on a vertical plate that 

so that small-amplitude long-wave disturbances grow when 

This is precisely the result of Yih (1963) when there is no slip (K = 0 )  at theliquid-solid 
boundary. Since K is numerically very small, condition (8.8) essentially has Re = iBh1. 
The slippage merely destabilizes the film by a minor amount. 

In  deriving result (8.8) we have taken the Bond number based on wavelength 
BA = 0 ( 1 )  as k -+ 0, which is the standard assumption invoked for incorporating the 
effects of surface tension into the dynamic stability criterion. Thus, surface tension on 
the interface is able to delay the onset of instability since, in two-dimensional flow, the 
capillary pressure gradients aways tend to oppose interfacial corrugations in the sense 
that bulk fluid is pumped from the thick region of the layer into the thin. 

9. Solutions for small S for fixed contact lines 

to ( 7 . 4 4 .  We then need not allow slip at  the solid so we take K = 0 in (7 .4b,  c ) .  
In  this section we take the contact lines to be fixed so that h = 0 at 2 = f 1 according 

Wesee from (7 .6b)  and (7.66) that P,is constant while from condition (7 .6e)  we have 

Po E 0.  (9 .1 )  

The streamwise velocity U, is then obtained from (7 .6a )  subject to conditions (7 .6g )  
and (7 .6 j ) .  We find for small 6 that 

U, = h,(Z) Y + O ( P ) .  (9 .2)  

Pl = 2Bz1.  (9 .3)  

Equations (7 .8b)  and ( 7 . 8 ~ )  show that P, is constant. We take, say, 

The leading-order boundary perturbation h, is determined through (7 .8e)  and con- 
ditions (7.7 a ) .  The solution for small 6 is 

h, = 1 - 2 2 .  (9 .4)  

In obtaining form (9 .4 )  we have neglected BylB, = k2/S2 in (7.9e) as discussed in 3 7 .  
The cross-speed W, is determined by (7.12b) and conditions ( 7 . 6 f )  and (7 .6k ) .  We 

find that 

We then determine form V, from (7 .6d ) ,  condition ( 7 . 6 i )  and form (9 .2)  as follows: 
w, = O(S8). (9 .5)  

(9 .6)  V, = - +ih0(Z) YB+ O(82). 

Given the forms (9 .2)  and (9 .4))  we can compute c, from (7 .6h) .  For small S we find 
that 

We now turn to  solutions of the order-k corrections. 

C ,  = 0*686+0(6a).  (9 .7)  
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The correction to the streainwise velocity is determined by ( 7 . 9 ~ )  and the condition 
(7.8j). If we use the value of P, given by (9.3), then we find that 

U, = i{B~'Y2+&Rho(fHY4-c0Y3) + A , ( Z )  Y}+O(P) ,  

which satisfies the no-slip condition at Y = 0. 
From the form (9.8) we can obtain h, through (7.89). We find that 

h, = i { 2 B ~ ' H + g R h , [ g H ~ - c , H ~ ]  + A , ( Z ) } + O ( P ) .  (9.9) 

The function A , ( Z )  in results (8.7) and (9.9) is seen to involve only terms that 
reproduce the complementary solutions U, and h, in U, and h,, respectively. Hence, the 
forms that satisfy the boundary conditions have A , ( Z )  = a,h,(Z), where a, is an 
arbitrary constant. We can then choose a, = 0 and still have h, of (7.8) satisfy the end 
conditions h,( +_ 1) = 0. 

If we substitute the forms for U,, h, and h, into (7.9h) and use A, (Z)  = 0, we obtain 

C, = 0*031[R- 14 .8B~' l i .  (9.10) 

Hence, flat rivulets on vertical walls are stable to small long-wave disturbances as 
long as 

R < R, = 14.8BE'. (9.11) 

This region of stability is much greater than that of film flow since we are presuming 
that k < 8. The immobility of the contact lines is responsible for this stabilization as 
will be seen in 5 10. 

In the present case of rivulets with fixed contact lines, the surface tension on the 
interface is seen to delay the onset of instability in much the same way as in film flow. 
Even though the rivulet is three-dimensional, capillary pressures oppose interfacial 
corrugations. 

10. Solutions for small 6 for fixed contact angles 

free to move and we allow effective slip on the solid-liquid interface. 

(7.6e) we have that 

In this section we take the contact angles to be fixed. Hence, the contact lines are 

We see from equations (7.6b) and ( 7 . 6 ~ )  that Po is constant while from condition 

Po = 0. (10.1) 

(10.2) 

The streamwise velocity U, is then obtained from (7.6a), 

u, = A,(Z) Y + B,(Z) + O(S2) 

and the modification h, in the boundary position is obtained from (7.6g), 

h, = A,(Z) + O(b2). (10.3) 

Equations (7.8b) and ( 7 . 8 ~ )  show that P, is constant. We take, say, 

Pl = 2Bz'. 

We now use relation (7.8e) to evaluate A,(Z) as follows: 

(10.4) 

= -((22+a,Z+b,). (10.5) 
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If we use forms (10.3) and (10.5) in the contact-line condition (7 .7b) ,  we find that 

and 
b, = 1 

a, arbitrary 

( 1 0 . 6 ~ )  

( 10.6 b )  

Finally, we use the slip condition (7.6j) and forms (10.2) and (10.3) to evaluate B,(Z),  

B,(Z)  = 0. (10.7) 

Hence, we have from forms (10.2)-( 10.7) that 

and 
( 1 0 . 8 ~ )  

(l0.8b) 

where the constant a, is arbitrary. 
We can now evaluate co using condition (7.6h). We find that 

c,, = 0.457 4- K + 0 ( S 2 ) .  (10.9) 

The lateral speed W, is determined from (7.12b), condition (7.6f) and slip condition 
(7.6k). We find that 

Finally, the continuity equation (7.6d) and the condition (7.6i) give the normal 
speed 6, 

w, = O(S2). (10.10) 

v, = - iih, Y2+ O(62). (10.11) 

We now turn to the determination of the order-k corrections. The streamwise speed 
U,, is given by (7.8a), the value P, = 2Bz1 and the forms for U,, W, and g .  We find that 

U, = i{Bi;'Y2++Rho[&HY4- (c,-K) Y3]+A1(Z) Y+Bl(Z)}+O(S2).  (10.12) 

From (10.12) and (7.8g) we have that 

h1 = i{2Bi1H + #Rh0[&H4 - (c, - K )  H 2 ]  + A,(Z)}  + O(62). (10.13) 

But, the slip condition (7.8j) gives that 

B, = - ~ { 2 B i l +  &Rh0[4H3 - (c, - K )  HI} + O(6'). (10.14) 

We need only calculate A,(Z)  before we can find c,. 
A t  this point we have no deductive way of determining A, (Z) .  Hence, we use the 

following procedure. We shall pose that A, is a minimal polynomial, determine its 
coefficients and hence obtain a unique functional form. The method is reminiscent of 
Benjamin's (1957) use of power series expansion in the independent variable for the 
determination of c1 for film flow. 

In order to evaluate A,  we assume the form 

A,(Z)  = b,+a,Z+d1Z2 (10.15) 

and substituteinto thecontact-line condition (7.9b). We find thatd, - b, = 4B,1anda1 
arbitrary so that 

Al(Z) = a,( 1 + Zz) + b,Z + 4B,'Z2. (10.16) 

Without loss of generality we can take take a, = 0 since this term only reproduces the 
complementary solutions. Again, the value of b, does not affect the stability condition. 
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The value of c1 can be calculated from (7.8h) using (10.12)-(10.15). We find that 

(10.17) 

We thus see that for fixed contact angles that vertical flat rivulets are always 
unstable to small-amplitude long waves. 

We note here that surface tension on the interface augments the kinematic long- 
wave instability. Here, the capillary pressure gradient aids the instability by the same 
mechanism responsible for the break-up of a cylinder into droplets (Rayleigh 1879). 

C, = ((0.228 + K )  B,'+ (0.0031 + 0.0491~)  R}i. 

11. Solutions for small 6 for smooth contact-angle variations 
In  this section we allow the contact line to move freely by allowing effective slip on 

the solid-liquid interface. The contact angle is assumed to be a smooth function of 
contact-line speed. 

The analysis of the previous section applies here line-for-line until the evaluation of 
A,(Z) in (10.16). Since equation ( 7 . 9 ~ )  must replace (7.9b)) the coefficient 4 B ~ 1  in A ,  
must be replaced by 4B;l- glco. As a result, the relevant complex disturbance speeds 
are as follows: 

c, = 0.457 + K (11.1)  
and 

C, = { ( 0 * 2 2 8 + ~ ) B Z ~ +  (0.0031 + 0 ~ 0 4 9 1 ~ ) R - ( 0 ~ 0 2 6 1 + 0 ~ 0 5 7 1 ~ ) ~ ~ } ~ .  (11.2) 

We thus see that the change in contact angle with contact line speed is a stabilizing 
effect whose magnitude g1 = G,/62 may, indeed, be large. 

Surface tension on the interface again augments the instability as in the case of fixed 
contact angles. 

12. Conclusions 
In the present work we have formulated the linearized stability theory of dynamic 

rivulets flowing down vertical walls. The three types of contact-line conditions defined 
by Davis (1980) have been considered: (i) fixed contact lines, (ii) fixed contact angles 
and (iii) contact angles that vary smoothly with contact-line speeds. In cases (ii) and 
(iii), since the contact lines are free to move, effective slip between the liquid and solid 
is posed. In each of these cases, though, the slip coeficient and hence the slip model 
have only a negligible effect on the final results. 

The undisturbed rivulet consists of unidirectional parallel flow down the plate, 
a cylindrical meniscus of circular cross-section and straight contact lines. Its maximum 
depth is h, and its width is 2L. The present theory consists of examining travelling- 
wave disturbances of wavelength A much greater than the rivulet depth h, so that 
k = 2?-~h,/A satisfies 

k <  1. 

Furthermore, the rivulet is considered quite flat so that, if S = h,/L, then 

6 2 <  1 .  

We presume that k 6 so that arbitrary 6 is included in the analysis and the rivulet 
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resembles film flow for small 6. The results of this theory for long waves on flat 
rivulets depend on contact-line boundary conditions. 

When the contact lines are fixed, there is a critical Reynolds number Re above which 
the basic rivulet is unstable to small long-wave disturbances. Here 

Re = 14.8BE'. 

This compares to the film flow critical Reynolds number 

Re = 2.5B,i1. 

Hence, the flat rivulet, having fixed contact lines, is quite a bit more stable than the 
corresponding film flow. This stabilization results from surface tension being a more 
effective stabilizer on length scale L,  the width, than on the length scale h and the 
immobility of the contact lines. It is the curvature in the rivulet cross-section that 
dominates the stabilization of the rivulet for k < 6. The phase speed of the most 
critical disturbance is cR.  In  the film flow case, cR R 1 ,  which is twice the surface speed 
in the basic film flow. In the case of the rivulet with fixed contact lines, cR E 0-686 
where the surface speed in the basic rivulet varies from 4 at the centre-line to zero a t  
the contact line. If one calculates the speed averaged over the rivulet cross-section, 
one again finds that small-amplitude waves travel a t  about twice the average surface 
speed. 

When the contact lines move with fixed contact angle, there is no critical Reynolds 
number; the rivulet is always unstable and the waves travel substantially slower than 
before. The high degree of instability here is apparently associated with the extra 
degree of freedom available to the rivulet. However, such arguments are not without 
peril in free-surface problems as shown by Davis & Homsy ( 1980) is a different context. 

When the contact lines move such that the contact angle is a smooth function of 
contact-line speed, a new parameter G,  enters the problem. If 01 is the contact angle 
and U,, is the contact-line speed, then G, = [da/dUe,]u,,=,. The stability analysis 
shows that the stability condition corresponding to fixed contact angle applies 
except that the steepening of the contact angle with contact-line motion acts to 
stabilize. This stabilization is proportional to gl, where g, = G,e2 and g1 is assumed 
order unity as 6 + 0. Here, the complex growth rate c for S + 0, has the approximate 
form 

where we have neglected terms proportional to the slip coefficient K .  Hence, if gl is 
large enough, the damping effect of changes in contact angle can stabilize an otherwise 
unconditionally unstable rivulet. (The fixed-contact-angle case is obtained by letting 
g, + 0.) Furthermore, one is tempted to think that the physically realistic case of 
contact-angle hysteresis might be approached from the present case with g1 + 00. This 
would suggest that contact-angle hysteresis would lead to absolute stability of rivulets 
against small-amplitude long waves. This interpretation, though, remains at the 
moment only conjectural. 

In any case, the present analysis supports the finding of Davis (1980) that increase 
in contact angle with contact-line speed is a purely dissipative effect. In  his analysis 
of static rivulets, the stability condition is left unchanged by g1 p 0 in the same way 
that viscosity leaves the threshold wavenumber unchanged in the capillary instability 
of a Rayleigh jet. In  the present analysis of a dynamic rivulet, the effect of dynamically 

c 0.457 + ik{O-228BE1 + 0.0031R - 0*0261g1} + O(k2),  
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changing contact angles again acts in the direction of damping leading to a stabiliz- 
ation of an otherwise unstable rivulet. It is interesting to think that this dissipation 
effect might hold in general, i.e. in a broad range of stability problems where finite- 
amplitude disturbances are present. Such an insight would be extremely helpful in 
more complicated situations where analysis is not possible. This result is, however, 
not available a t  present. 

One common feature of the two moving-contact-line cases considered is that  surface 
tension on the interface acts to  reinforce the kinematic instability. This is to be 
expected since the basic rivulet has a curved (cylindrical) meniscus and so it is suscep- 
tible to a Rayleigh (1879)-type instability. The capillary pressure gradients do, 
indeed, pump fluid from thinner toward thicker regions. On the other hand, when the 
contact lines are fixed, the disturbances produce surface corrugations that lead to 
capillary pressures opposing kinematic instabilities in the same way as it does in the 
case of two-dimensional waves in film flow. 

This work was made possible by the support of a grant from the National Science 
Foundation, Fluid Mechanics Program. 
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